Chemical Kinetics

1

CHEMICAL KINETICS

- Decomposition of X exhibits a rate constant of 0.05 µg/year. How many years are required for the decomposition of 5 µg of X into 2.5 µg ?
 - (1) 50 (2) 25
 - (3) 20 (4) 40
- 2. If a reaction follows the Arrhenius equation,

the plot lnk vs $\frac{1}{(RT)}$ gives straight line with a

gradient (-y) unit. The energy required to activate the reactant is :

- (1) y unit
 (2) -y unit
 (3) yR unit
 (4) y/R unit
- 3. The reaction $2X \rightarrow B$ is a zeroth order reaction. If the initial concentration of X is 0.2 M, the half-life is 6 h. When the initial concentration of X is 0.5 M, the time required to reach its final concentration of 0.2 M will be :-

(1) 18.0 h	(2) 7.2 h
(3) 9.0 h	(4) 12.0 h

4. Consider the given plots for a reaction obeying Arrhenius equation $(0^{\circ}C < T < 300^{\circ}C)$: (k and E_a are rate constant and activation energy, respectively)

Choose the correct option :

- (1) Both I and II are wrong
- (2) I is wrong but II is right
- (3) Both I and II are correct
- (4) I is right but II is wrong

5. For an elementary chemical reaction,

6.

$$A_{2} \xleftarrow{k_{1}}{k_{-1}} 2A, \text{ the expression for } \frac{d[A]}{dt} \text{ is :}$$
(1) $2k_{1}[A_{2}]-k_{-1}[A]^{2}$
(2) $k_{1}[A_{2}]-k_{-1}[A]^{2}$
(3) $2k_{1}[A_{2}]-2k_{-1}[A]^{2}$
(4) $k_{1}[A_{2}]+k_{-1}[A]^{2}$
Exactly a set in the metric scheme the set of the set

- For the reaction, $2A + B \rightarrow \text{products}$, when the concentrations of A and B both wrere doubled, the rate of the reaction increased from 0.3 mol $L^{-1}s^{-1}$ to 2.4 mol $L^{-1}s^{-1}$. When the concentration of A alone is doubled, the rate increased from 0.3 mol $L^{-1}s^{-1}$ to 0.6 mol $L^{-1}s^{-1}$ Which one of the following statements is correct ?
 - Order of the reaction with respect to Bis2
 Order of the reaction with respect to Ais2
 - (3) Total order of the reaction is 4
- (4) Order of the reaction with respect to B is 1
 7. For a reaction, consider the plot of ln k versus 1/T given in the figure. If the rate constant of this reaction at 400 K is 10⁻⁵ s⁻¹, then the rate constant at 500 K is :

8. The following results were obtained during kinetic studies of the reaction :

(4) $4 \times 10^{-4} \text{ s}^{-1}$

 $2A + B \rightarrow Products$

(3) 10^{-6} s^{-1}

Experment	[A] (in mol L ⁻¹)	[B] (in mol L ⁻¹)	Initial Rate of reaction (in mol L^{-1} min ⁻¹)
(I)	0.10	0.20	6.93×10^{-3}
(II)	0.10	0.25	6.93×10^{-3}
(III)	0.20	0.30	1.386×10^{-2}

The time (in minutes) required to consume half of A is :

(1) 10 (2) 5

(3) 100 (4) 1

Ē

2 Chemical Kinetics

9. For the reaction 2A +B → C, the values of initial rate at different reactant concentrations are given in the table below. The rate law for the reaction is :

$[A] (mol L^{-1})$	$[B] (mol L^{-1})$	Initial Rate (mol $L^{-1}s^{-1}$)
0.05	0.05	0.045
0.10	0.05	0.090
0.20	0.10	0.72

- (1) Rate = k [A][B]
- (2) Rate = $k [A]^2 [B]^2$
- (3) Rate = $k [A][B]^2$
- (4) Rate = $k [A]^2[B]$

10. For a reaction scheme
$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$
, if

the rate of formation of B is set to be zero then the concentration of B is given by :

(1) $\left(\frac{k_1}{k_2}\right)$ [A] (2) $(k_1 + k_2)$ [A]

(3) $k_1 k_2 [A]$ (4) $(k_1 - k_2) [A]$

11. The given plots represent the variation of the concentration of a reactant R with time for two different reactions (i) and (ii). The respective orders of the reactions are :

- 12. For the reaction of H_2 with I_2 , the rate constant is 2.5×10^{-4} dm³ mol⁻¹ s⁻¹ at 327°C and 1.0 dm³ mol⁻¹ s⁻¹ at 527°C. The activation energy for the reaction, in kJ mol⁻¹ is: (R=8.314J K⁻¹ mol⁻¹) (1) 72 (2) 166 (3) 150 (4) 59
- **13.** In the following reaction; $xA \rightarrow yB$

$$\log_{10} \left[-\frac{d[A]}{dt} \right] = \log_{10} \left[\frac{d[B]}{dt} \right] + 0.3010$$

'A' and 'B' respectively can be :

(1) n-Butane and Iso-butane (2) C_2H_4 and C_4H_8

- (3) N_2O_4 and NO_2
- (4) C_2H_2 and C_6H_6
- 14. NO_2 required for a reaction is produced by the decomposition of N_2O_5 in CCl_4 as per the equation

 $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g).$

The initial concentration of N_2O_5 is 3.00 mol L⁻¹ and it is 2.75 mol L⁻¹ after 30 minutes. The rate of formation of NO_2 is :

- (1) $2.083 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ min}^{-1}$
- (2) $4.167 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ min}^{-1}$
- (3) $8.333 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ min}^{-1}$
- (4) $1.667 \times 10^{-2} \text{ mol } \text{L}^{-1} \text{ min}^{-1}$

1. Ans.(1) Rate constant (K) = $0.05 \mu g/year$

means zero order reaction
$$t_{1/2} = \frac{a_0}{2K} = \frac{5\mu g}{2 \times 0.05 \, \mu g \, / \, \text{year}} = 50 \text{ year}$$

2. Ans. (1)

3.

Ans. (1) For zero order $[A_0]-[A_t] = kt$ $0.2 - 0.1 = k \times 6$ $k = \frac{1}{60}$ M/hr

and
$$0.5-0.2 = \frac{1}{60} \times t$$

t = 18 hrs.

4. Ans. (4)

On increasing E_a , k decreases.

In plot II initially k is shown to be almost constant with temperature while as in moderate temperature range increase of k is very sharp, therefore plot II is incorrect.

5. Ans. (3)

Ans.(3)

$$A_2 \xrightarrow{K_1} 2A$$

 $\frac{d[A]}{dt} = 2k_1[A_2] - 2k_{-1}[A]^2$

6. Ans. (1)

 $r = K[A]^{x}[B]^{y}$ $\Rightarrow 8 = 2^{3} = 2^{x+y}$ $\Rightarrow x + y = 3 \dots (1)$ $\Rightarrow 2 = 2^{x}$ $\Rightarrow x = 1, y = 2$ Order w.r.t. A = 1 Order w.r.t. B = 2

$$ln \frac{K_2}{K_1} = \frac{E_a}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

$$2.303 \log \frac{K_2}{10^{-5}} = 4606 \left[\frac{1}{400} - \frac{1}{500} \right]$$

$$\Rightarrow K_2 = 10^{-4} \text{ s}^{-1}$$

8. Ans. (2) $6.93 \times 10^{-3} = K \times (0.1)^{x} (0.2)^{y}$ $6.93 \times 10^{-3} = K \times (0.1)^{x} (0.25)^{y}$ So y = 0and $1.386 \times 10^{-2} = K \times (0.2)^{x} (0.30)^{y}$ $\frac{1}{2} = \left(\frac{1}{2}\right)^x \quad x = 1$ So $r = K \times (0.1) \times (0.2)^0$ $6.93 \times 10^{-3} = K \times 0.1 \times (0.2)^{0}$ $K = 6.93 \times 10^{-2}$ $t_{1/2} = \frac{0.693}{2K} = \frac{0.693}{0.693 \times 10^{-1} \times 2} = \frac{10}{2} = 5$ 9. Ans.(3)**Sol.** $r = K [A]^x [B]^y$ $0.045 = K (0.05)^{x} (0.05)^{y}$(1) $0.090 = K (0.10)^{x} (0.05)^{y}$(2) $0.72 = K (0.20)^{x} (0.10)^{y}$(3) From (1) ÷ (2), $\frac{0.045}{0.090} = \left(\frac{0.05}{0.10}\right)^x \Rightarrow x = 1$ From (2) ÷ (3), $\frac{0.090}{0.720} = \left(\frac{0.10}{0.20}\right)^x \cdot \left(\frac{0.05}{0.10}\right)^y \Rightarrow y = 2$ Hence, $r = K [A] [B]^2$ Correct option : (3)10. Ans.(1)**Sol.** A $\xrightarrow{K_1}$ B $\xrightarrow{K_2}$ C $\frac{d[B]}{dt} = 0 = K_1[A] - K_2[B]$ \Rightarrow [B] = $\frac{K_1}{K_2}$ [A] 11. **Ans.(1) Sol.** (i) $\ln[R] = \ln[R]_0 - Kt$ (Ist order) $[R] = [R]_0 - Kt$ (zero order) \therefore Ans.(1)

ALLEN

12. Ans.(2)
Sol.
$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$

Apply Arrhenius equation
 $\log \frac{K_2}{K_1} = \frac{E_a}{2.303R} \left(\frac{1}{600} - \frac{1}{800}\right)$
 $\log \frac{1}{2.5 \times 10^{-4}} = \frac{E_a}{2.303 \times 8.31} \left(\frac{200}{600 \times 800}\right)$
 $\therefore E_a \approx 166 \text{ kJ/mol}$
13. Ans.(2)
Sol. $\log \frac{-d[A]}{dt} = \log \frac{d[B]}{dt} + 0.3010$
 $\frac{-d[A]}{dt} = 2 \times \frac{d[B]}{dt}$
 $\frac{1}{2} \times \frac{-d[A]}{dt} = \frac{d[B]}{dt}$
 $2A \longrightarrow B$
 $2C_2H_4 \longrightarrow C_4H_8$

14. Ans.(4)
Sol.
$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$

t=0 3.0M
t=30 2.75 M
 $\frac{-\Delta[N_2O_5]}{\Delta t} = \frac{0.25}{30}$
 $\frac{1}{2} \times \frac{-\Delta[N_2O_5]}{\Delta t} = \frac{1}{4} \times \frac{\Delta[NO_2]}{\Delta t}$
 $\frac{\Delta[NO_2]}{\Delta t} = \frac{0.25}{30} \times 2 = 1.66 \times 10^{-2}$ M/min