ALLEN

WAVE OPTICS

- 1. In a Young's double slit experiment, the slits are placed 0.320 mm apart. Light of wavelength $\lambda = 500$ nm is incident on the slits. The total number of bright fringes that are observed in the angular range $-30^{\circ} \le \theta \le 30^{\circ}$ is:
 - (1) 320 (2) 641
 - (3) 321 (4) 640
- 2. Consider a Young's double slit experiment as shown in figure. What should be the slit separation d in terms of wavelength λ such that the first minima occurs directly in front of the slit (S₁) ?

3. In a Young's double slit experiment with slit separation 0.1 mm, one observes a bright fringe at angle 1/40 rad by using light of wavelength λ₁. When the light of wavelength λ₂ is used a bright fringe is seen at the same angle in the same set up. Given that λ₁ and λ₂ are in visible range (380 nm to 740 nm), their values are :

3. (1) 380 nm, 500 nm
(2) 625 nm, 500 nm
(3) 380 nm, 525 nm

4. In a double-slit experiment, green light (5303 Å) falls on a double slit having a separation of 19.44 μ m and a width of 4.05 μ m. The number of bright fringes between the first and the second diffraction minima is :-

(1) 09 (2) 10 (3) 04 (4) 05

5. In a Young's double slit experiment, the path different, at a certain point on the screen,

between two interfering waves is $\frac{1}{8}$ th of wavelength. The ratio of the intensity at this point to that at the centre of a brigth fringe is close to :

(1) 0.94
(2) 0.74
(3) 0.85
(4) 0.80
A light wave is incident normally on a glass slab of refractive index 1.5. If 4% of light gets reflected and the amplitude of the electric field of the incident light is 30V/m, then the amplitude of the electric field for the wave propogating in the glass medium will be:

(1) 10 V/m	(2) 24 V/m
(3) 30 V/m	(4) 6 V/m

6.

7.

Consider a tank made of glass(reiractive index 1.5) with a thick bottom. It is filled with a liquid of refractive index μ ,. A student finds that, irrespective of what the incident angle *i* (see figure) is for a beam of light entering the liquid, the light reflected from the liquid glass interface is never completely polarized. For this to happen, the minimum value of μ is :

2 Wave Optics

- 8. Young's moduli of two wires A and B are in the ratio 7 : 4. Wire A is 2 m long and has radius R. Wire B is 1.5 m long and has radius 2 mm. If the two wires stretch by the same length for a given load, then the value of R is close to :-
 - (1) 1.9 mm (2) 1.7 mm
 - (3) 1.5 mm (4) 1.3 mm
- 9. In an interference experiment the ratio of $\frac{a_1}{1} = \frac{1}{1}$ The

amplitudes of coherent waves is $\frac{a_1}{a_2} = \frac{1}{3}$. The

ratio of maximum and minimum intensities of fringes will be :

(1) 4 (2) 2 (3) 9 (4) 18

10. Two cars A and B are moving away from each other in opposite directions. Both the cars are moving with a speed of 20 ms^{-1} with respect to the ground. If an observer in car A detects a frequency 2000 Hz of the sound coming from car B, what is the natural frequency of the sound source in car B? (speed of sound in air = 340 ms^{-1}) :-

(3) 2150 Hz (4) 2300 Hz

11. The figure shows a Young's double slit experimental setup. It is observed that when a thin transparent sheet of thickness t and refractive index μ is put in front of one of the slits, the central maximum gest shifted by a distance equal to n fringe widths. If the wavelength of light used is λ , t will be :

12. In a Young's doubble slit experiment, the ratio of the slit's width is 4 : 1. The ratio of the intensity of maxima to minima, close to the central fringe on the screen, will be :

(1) $(\sqrt{3}+1)^4$:16	(2) 9 : 1
(3) 4 : 1	(4) 25 : 9

13. The correct figure that shows, schematically, the wave pattern produced by superposition of two waves of frequencies 9 Hz and 11 Hz is :

Wave Optics 3

ALLEN

- 14. A system of three polarizers P_1 , P_2 , P_3 is set up such that the pass axis of P_3 is crossed with respect to that of P_1 . The pass axis of P_2 is inclined at 60° to the pass axis of P_3 . When a beam of unpolarized light of intensity I_0 is incident on P_1 , the intensity of light transmitted by the three polarizers is I. The ratio (I_0/I) equals (nearly) :
 - (1) 16.00 (2) 1.80
 - (3) 5.33 (4) 10.67
- 15. In a double slit experiment, when a thin film of thickness t having refractive index μ is introduced in front of one of the slits, the maximum at the centre of the fringe pattern shifts by one fringe width. The value of t is (λ is the wavelength of the light used) :

(1)
$$\frac{\lambda}{2(\mu-1)}$$
 (2) $\frac{\lambda}{(2\mu-1)}$
(3) $\frac{2\lambda}{(\mu-1)}$ (4) $\frac{\lambda}{(\mu-1)}$

- 16. Calculate the limit of resolution of a telescope objective having a diameter of 200 cm, if it has to detect light of wavelength 500 nm coming from a star :-
 - (1) 305×10^{-9} radian
 - (2) 152.5×10^{-9} radian
 - (3) 610×10^{-9} radian
 - (4) 457.5×10^{-9} radian

- 17. Diameter of the objective lens of a telescope is 250 cm. For light of wavelength 600nm. coming from a distant object, the limit of resolution of the telescope is close to :(1) 1.5 × 10⁻⁷ rad
 (2) 2.0 × 10⁻⁷ rad
 - (3) 3.0×10^{-7} rad (4) 4.5×10^{-7} rad
- **18.** The value of numerical aperature of the objective lens of a microscope is 1.25. If light of wavelength 5000 Å is used, the minimum separation between two points, to be seen as distinct, will be :

(1) 0.24 µm	(2) 0.48 µm
(3) 0.12 μm	(4) 0.38 μm

1.

 y_2

Q

Pam difference $dsin\theta = n\lambda$ where d = seperation of slits

 λ = wave length

n = no. of maximas

 $0.32 \times 10^{-3} \sin 30 = n \times 500 \times 10^{-9}$

n = 320

Hence total no. of maximas observed in angular range $-30^\circ \le \theta \le 30^\circ$ is maximas = 320 + 1 + 320 = 641

2. Ans. (4)

 $\sqrt{5}d - 2d = \frac{\lambda}{2}$

3. Ans. (2) Path difference = $d \sin \theta \approx d\theta$

$$= 0.1 \times \frac{1}{40}$$
 mm = 2500nm

or bright fringe, path difference must be integral multiple of λ .

- $\therefore 2500 = n\lambda_1 = m\lambda_2$
- :. $\lambda_1 = 625, \lambda_2 = 500 \text{ (from m=5)}$ (for n = 4)

4. Ans. (4)

According to JEE-Mains Ans. key (3) For diffraction

location of 1st minime

$$y_1 = \frac{D\lambda}{a} = 0.2469 \, D\lambda$$

location of 2nd minima

$$y_2 = \frac{2D\lambda}{a} = 0.4938D\lambda$$

Path difference at P.

$$\frac{\mathrm{dy}}{\mathrm{D}} = 4.8\lambda$$

path difference at Q

$$\frac{\mathrm{dy}}{\mathrm{D}} = 9.6\,\lambda$$

So orders of maxima in between P & Q is

5, 6, 7, 8, 9

So 5 bright fringes all present between P & Q.

Ans. (3)
$$\Delta x = \frac{\lambda}{\lambda}$$

5.

6.

$$\Delta \phi = \frac{(2\pi)}{\lambda} \frac{\lambda}{8} = \frac{\pi}{4}$$
$$I = I_0 \cos^2\left(\frac{\pi}{8}\right)$$
$$\frac{I}{L} = \cos^2\left(\frac{\pi}{8}\right)$$

Ans. (2)

$$P_{\text{refracted}} = \frac{96}{100} P_{1}$$

$$\Rightarrow K_{2}A_{t}^{2} = \frac{96}{100} K_{1}A_{i}^{2}$$

$$\Rightarrow r_{2}A_{t}^{2} = \frac{96}{100} r_{1}A_{i}^{2}$$

$$\Rightarrow A_{t}^{2} = \frac{96}{100} \times \frac{1}{3} \times (30)^{2}$$

04

$$A_t \sqrt{\frac{64}{100} \times (30)^2} = 24$$

Е

ALLEN

Ans. (1) 7. $C < i_{b}$ here ib is "brewester angle" and c is critical angle since $\tan i_b = \mu_{0_{rel}} = \frac{1.5}{\mu}$ $\sin_c < \sin i_b$ $\frac{1}{\mu} < \frac{1.5}{\sqrt{\mu^2 + (1.5)^2}} \qquad \therefore \sin i_b = \frac{1.5}{\sqrt{\mu^2 + (1.5)^2}}$ $\sqrt{\mu^2 \times (1.5)^2} < 1.5 \times \mu$ $\mu^2 + (1.5)^2 < (\mu \times 1.5)^2$ $\mu < \frac{3}{\sqrt{5}}$ slab $\mu = 1.5$ 8. Ans. (2) Sol. Given $\frac{Y_A}{Y_R} = \frac{7}{4} \qquad L_A = 2m \qquad A_A = \pi R^2$ $L_{\rm B} = 1.5 {\rm m}$ $A_{\rm B} = \pi (2{\rm mm})^2$ $\frac{F}{A} = Y\left(\frac{\ell}{L}\right)$ given F and ℓ are same $\Rightarrow \frac{AY}{L}$ is same $\frac{A_A Y_A}{L_A} = \frac{A_B Y_B}{L_B}$ $\Rightarrow \frac{\left(\pi R^2\right) \left(\frac{7}{4} Y_B\right)}{2} = \frac{\pi (2mm)^2 \cdot Y_B}{1.5}$ R = 1.74 mm

9. Ans. (1)
Sol. Given
$$\frac{a_1}{a_2} = \frac{1}{3}$$

Ratio of intensities, $\frac{I_1}{I_2} = \left(\frac{a_1}{a_2}\right)^2 = \frac{1}{9}$
Now, $\frac{I_{max}}{I_{min}} = \left(\frac{\sqrt{I_1} + \sqrt{I_2}}{\sqrt{I_1} - \sqrt{I_2}}\right)^2 = \left(\frac{1+3}{1-3}\right)^2 = 4$
10. Ans. (1)
Sol. $20m/s$ f
 $4(observer)$ f

 $\therefore \frac{I_{max}}{I_{max}} = \frac{9}{1}$

Ε

ALLEN

- **13.** Ans. (4)
- **Sol.** $f_{beat} = 11 9 = 2 \text{ Hz}$
 - \therefore Time period of oscillation of amplitude

$$=\frac{1}{f_{beat}}=\frac{1}{2}Hz$$

Although the graph of oscillation is not given, the equation of envelope is given by option (4)

- 14. Ans. (4)
- **Sol.** Since unpolarised light falls on $P_1 \Rightarrow$ intensity

of light transmitted from $P_1 = \frac{I_0}{2}$

Pass axis of P_2 will be at an angle of 30° with P_1

: Intensity of light transmitted from

$$P_2 = \frac{I_0}{2} \cos^2 30^\circ = \frac{3I_0}{8}$$

Pass axis of P_3 is at an angle of 60° with P_2

: Intensity of light transmitted from

P₃ =
$$\frac{3I_0}{8} \cos^2 60^\circ = \frac{3I}{32}$$

∴ $\left(\frac{I_0}{I}\right) = \frac{32}{3} = 10.67$

15. Ans. (4)

 $\Delta X = (\mu - 1)t = 1\lambda$

for one maximum shift

16. Ans. (1)

Sol. Limit of resolution of telescope = $\frac{1.22\lambda}{D}$

$$\theta = \frac{1.22 \times 500 \times 10^{-9}}{200 \times 10^{-2}} = 305 \times 10^{-9} \text{ radian}$$

17. Ans. (3)

Sol. Limit of resolution =
$$\frac{1.227}{4}$$

$$=\frac{1.22\times600\times10^{-6}}{250\times10^{-2}}$$

$$= 2.9 \times 10^{-7}$$
 rad

18. Ans. (1)

Sol. Numerical aperature of the microscope is given as

$$NA = \frac{0.61\lambda}{d}$$

Where d = minimum sparation between two points to be seen as distinct

$$d = \frac{0.61\lambda}{NA} = \frac{(0.61) \times (5000 \times 10m^{-10})}{1.25}$$
$$= 2.4 \times 10^{-7} m$$
$$= 0.24 \ \mu m$$