

5. The major product obtained from E_2 -elimination of 3-bromo-2-fluoropentane is:

Br
(1)
$$CH_3CH_2-CH-CH=CH_2$$

Br
(2) $CH_3-CH_2-C=CH-CH_3$
(3) $CH_3-CH=CH-CH-CH_3$
(4) $CH_3CH_2CH=C-F$
CH₃

6. Consider the reaction sequence given below :

$$\xrightarrow{OH^{\Theta}} H_{2O} \xrightarrow{OH^{\Theta}} OH + Br^{\Theta} \dots (1)$$

rate = k[t-BuBr]
$$\xrightarrow{OH^{\Theta}} H_{2C} \xrightarrow{CH_3} + HOH + Br^{\Theta} \dots (2)$$

rate = k[t-BuBr] [OH^{\Theta}]

Which of the following statements is true :

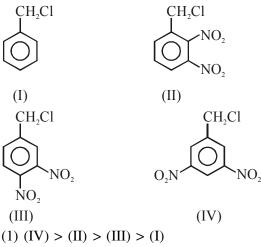
- (1) Changing the concentration of base will have no effect on reaction (1)
- (2) Changing the concentration of base will have no effect on reaction (2)
- (3) Changing the base from OH^{\ominus} to ${}^{\ominus}OR$ will have no effect on reaction (2)
- (4) Doubling the concentration of base will double the rate of both the reactions.
- The mechanism of S_N^1 reaction is given as :

$$\begin{array}{c} R - X \rightarrow R^{\oplus} X^{\ominus} \rightarrow R^{\oplus} || X^{\ominus} \xrightarrow{Y^{\ominus}} R - Y + X^{\ominus} \\ Ion & Solvent \\ pair & separated ion \\ nair \end{array}$$

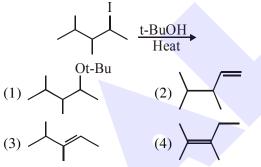
A student writes general characteristics based on the given mechanism as :

- (a) The reaction is favoured by weak nucleophiles
- (b) R[⊕] would be easily formed if the substituents are bulky
- (c) The reaction is accompained by recemization
- (d) The reaction is favoured by non-polar solvents.

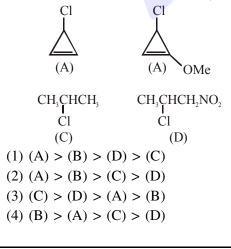
Which observations are correct ?

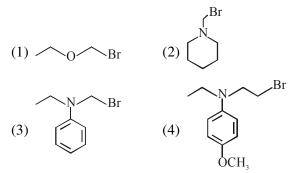

- (1) b and d (2) a and c
- $(3) a, b and c \qquad (4) a and b$

2 Halogen Derivative


ALLEN

8. The total number of monohalogenated organic products in the following (including stereoisomers) reaction is _____.


9. The decreasing order of reactivity of the following compounds towards nucleophilic substitution (S_N^2) is :

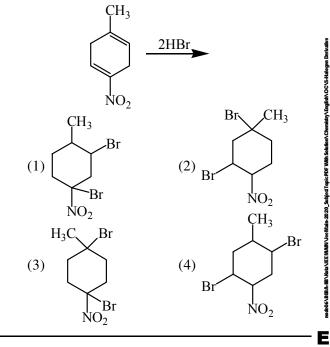

- (1) (IV) > (II) > (III) > (IV) > (I)(2) (II) > (III) > (IV) > (I)
- (2) (II) > (III) > (I \vee) > (IV) (3) (II) > (III) > (I) > (IV)
- (3) (II) > (II) > (I) > (IV) > (I)(4) (III) > (II) > (IV) > (I)
- **10.** The major product in the following reaction is :

11. The decreasing order of reactivity of the following organic molecules towards AgNO₃ solution is :

12. Which of the following compounds will form the precipitate with aq. AgNO₃ solution most readily?

13. The major product formed in the following reaction is :

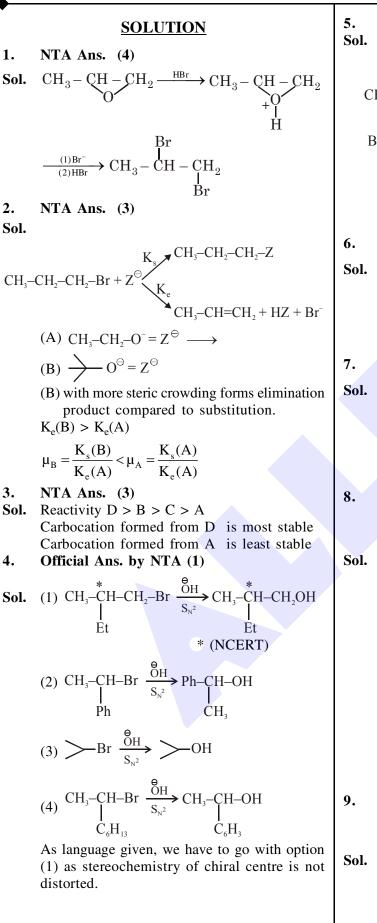
 $CH_{3}CH = CHCH(CH_{3})_{2} \xrightarrow{HBr}$


- (1) $CH_3 CH_2 CH_2 C(Br) (CH_3)_2$
- (2) $Br(CH_2)_3 CH(CH_3)_2$
- (3) CH₃ CH₂ CH(Br) CH(CH₃)₂
- (4) CH₃ CH(Br) CH₂ CH(CH₃)₂
- **14.** The increasing order of the boiling points of the major products A, B and C of the following reactions will be :

(a)
$$+ HBr \xrightarrow{(C,H,CO)} A$$

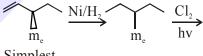
(b) $+ HBr \longrightarrow B$
(c) $+ HBr \longrightarrow C$

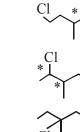
(1)
$$C < A < B$$
 (2) $B < C < A$


(3)
$$A < B < C$$
 (4) $A < C < B$

15. The major product of the following reaction is

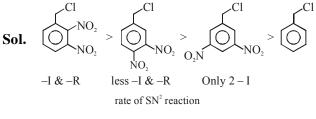
ALLEN

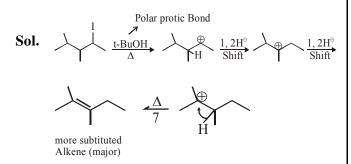

Е


5. Official Ans. by NTA (4)
Sol.
(H) more acidic H (CH₃-CH₂-CH-C-CH₃) (E₂) (B) F F
Better leaving group
CH₃-CH₂-CH=C-CH₃ F Stable alkene having 5 αH
6. Official Ans. by NTA (1)
Sol. Reaction 1 : SN₁ Reaction 2 : E₂ SN₁ is independent of concentration of nucleophile/base
7. Official Ans. by NTA (2)
Sol. S_N¹ favours
(a) The reaction is favoured by weak nucleophiles

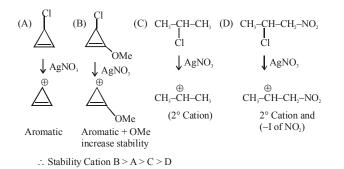
- (b) R[⊕] would be easily formed if the substituents are bulky
- (c) The reaction is accompained by recemization

. Official Ans. by NTA (8)



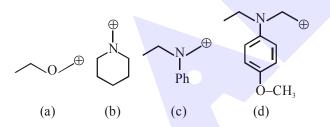

 $\sim 1^{-1}$

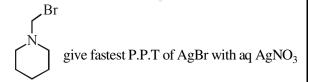
9. Official Ans. by NTA (2)


4 Halogen Derivative

10. Official Ans. by NTA (4)

11. Official Ans. by NTA (4)


Sol.


12. Official Ans. by NTA (2)

Sol.
$$R - x + aq.AgNO_3 \xrightarrow{R.D.S} R^{\oplus} + Agx_{(PPT)}$$
 (1)

So rate of P.P.T formation of Agx depend's on stability of carbocation (R⁺) In given question formed carbocation will be

Most stable carbocation is (b) so

13. Official Ans. by NTA (1) Official Ans. by ALLEN (4)

Sol. $CH_3-CH=CH-CH-CH_3$ From HBr H^{\oplus} CH_3 $CH_3-CH-CH-CH-CH_3$ H CH_3 $CH_3-CH-CH-CH_2-CH-CH_3$ H CH_3 $CH_3-CH-CH_2-CH-CH_3$ H CH_3

Addition of HBr according to M.R.

- 14. Official Ans. by NTA (2) Sol. (a) $\xrightarrow{\text{peroxide} \\ HBr}$ \xrightarrow{Br} 102°C (b) \xrightarrow{HBr} \xrightarrow{Br} 73.3°C (c) \xrightarrow{HBr} \xrightarrow{Br} 91°C B.P. $\propto \frac{1}{\text{Branching}}$ \therefore a > c > b (order of B.P.)
- 15. Official Ans. by NTA (2)

Е

ALLEN