NEET(UG) - 2021

CHEMISTRY

TOPIC: CHEMICAL KINETICS

LECTURE-01

- 1. In a catalytic reaction involving the formation of ammonia by Haber's process $N_2 + 3H_2 \rightarrow 2NH_3$ the rate of appearance of NH_3 was measured as 2.5×10^{-4} mole L^{-1} s⁻¹ The rate of disappearance of H_2 will be
 - (1) $2.5 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}$
 - (2) $1.25 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}$
 - (3) $3.75 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}$
 - (4) $5 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}$
- 2. Rate of formation of SO_3 according to the reaction $2SO_2+O_2 \rightarrow 2SO_3$ is 1.6×10^{-3} kg L⁻¹ min⁻¹ Hence rate of decomposition of SO_2 is :-
 - (1) $1.6 \times 10^{-3} \text{ kg L}^{-1} \text{ min}^{-1}$
 - (2) $8.0 \times 10^{-4} \text{ kg L}^{-1} \text{ min}^{-1}$
 - (3) $3.2 \times 10^{-3} \text{ kg L}^{-1} \text{ min}^{-1}$

as following :-

- (4) $1.28 \times 10^{-3} \text{ kg L}^{-1} \text{ min}^{-1}$
- 3. In the reaction $BrO_3^-(aq) + 5Br^-(aq) + 6H^+ \rightarrow 3Br_2(\ell) + 3H_2O(1)$ The rate of appearance of bromine (Br₂) is related to rate of disappearance of bromide ions
 - (1) $\frac{d[Br_2]}{dt} = \frac{3}{5} \frac{d[Br^-]}{dt}$ (2) $\frac{d[Br_2]}{dt} = -\frac{3}{5} \frac{d[Br^-]}{dt}$
 - (3) $\frac{d[Br_2]}{dt} = -\frac{5}{3} \frac{d[Br^-]}{dt}$ (4) $\frac{d[Br_2]}{dt} = \frac{5}{3} \frac{d[Br^-]}{dt}$
- 4. For the reaction $N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$ the value of rate of disappearance of N_2O_5 is given as 6.25×10^{-3} mol $L^{-1}s^{-1}$. The rate of formation of NO_2 and O_2 is given respectively as :-
 - $(1)1.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ and}$ $6.25 \times 10^{-3} \text{ mol L}^{-1}\text{s}^{-1}$
 - $(2)6.25 \times 10^{-3} \text{ mol L}^{-1}\text{s}^{-1}$ and
 - $6.25 \times 10^{-3} \text{ mol L}^{-1}\text{s}^{-1}$
 - $(3)1.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ and}$ $3.125 \times 10^{-3} \text{ mol L}^{-1}\text{s}^{-1}$
 - $(4)6.25 \times 10^{-3} \text{ mol L}^{-1}\text{s}^{-1}$ and
 - $3.125 \times 10^{-3} \text{ mol L}^{-1}\text{s}^{-1}$

- 5. In a reaction A + B → Product, rate is doubled when the concentration of B is doubled and rate increased by a factor of 8 when the concentrations of both the reactants (A and B) are doubled, rate law for the reaction can be written as:
 - (1) Rate = k[A][B]
- (2) Rate = $k[A]^2[B]$
- (3) Rate = $k[A][B]^2$
- (4) Rate = $k[A]^2[B]^2$
- 6. For reaction aA → xP. When [A] is 2.2 mM, the rate was found to be 2.4 mMs⁻¹. On reducing concentration of A to half, the rate changes to 0.6 mMs⁻¹. The order of reaction with respect to A is :
 - (1) 1.5
- (2) 2.0
- (3) 2.5
- (4) 3.0
- 7. For any chemical reaction, chemists try to find out
 - (1) the feasability of a chemical reaction which can be predicted by thermodynamics
 - (2) speed of a reaction
 - (3) extent to which a reaction will proceed can be determined
 - (4) All of the above
- 8. For a reaction $r = K[A]^{3/2}$ then unit of rate of reaction and rate constant respectively:-
 - (1) $molL^{-1} s^{-1}$, $mol^{-1/2} L^{1/2} s^{-1}$
 - (2) $\text{mol}^{-1}L^{-1}s^{-1}$, $\text{mol}^{-1/2}L^{1/2}s^{-1}$
 - (3) $molL^{-1}s^{-1}$, $mol^{+1/2}L^{1/2}s^{-1}$
 - (4) mol, $mol^{+1/2} L^{1/2} s$
- **9.** The rate of reaction is expressed

$$+\frac{1}{2}\frac{d[C]}{dt} = -\frac{1}{3}\frac{d[D]}{dt} = +\frac{1}{4}\frac{d[A]}{dt} = \frac{-d[B]}{dt}$$

the reaction is

- $(1) 4A + B \rightarrow 2C + 3D$
- $(2) B + 3D \rightarrow 4A + 2C$
- $(3) A+B \rightarrow C+D$
- (4) B+D \rightarrow A+C